Skip to content
Project Directory
  • Français
Donate Now
  • Français
  • About
    • What We Do
    • Leadership
    • Team
    • Publications
    • Careers
  • Diseases/Disorders
    • One Brain
    • ALS
    • Alzheimer’s
    • Autism
    • Brain Cancer
    • Brain Injury
    • Epilepsy
    • Mental Illness
    • Multiple Sclerosis
    • Parkinson’s
    • Stroke
    • Other
  • Research
    • Programs
    • Funding Opportunities
    • Program Partners
    • Announcements
  • Impact
  • Ways To Give
    • Your Impact
    • How You Can Help
    • Events

Funded Grants

Back to results

Toxicity Pathways and Catalytic Potential of Cu-Containing AB Oligomers

Project Overview

The protein fragment beta-amyloid has long been a key suspect in Alzheimer’s disease. Beta-amyloid molecules have a normal function, but in Alzheimer’s they form clumps called oligomers and plaques that may be toxic to nerve cells. Recent studies indicate that beta-amyloid is more likely to form toxic clumps when it interacts with charged metal particles called ions, especially copper ions. Researchers do not know exactly how this harmful interaction takes place, but it may result from copper ions becoming improperly regulated in the Alzheimer’s brain. More research is needed to understand how copper-containing oligomers exert their toxicity in the brain after they have formed. Tim Storr, Ph.D., and colleagues will perform a series of experiments to examine how copper-containing amyloid oligomers affect nerve cell health. They will administer these oligomers to nerve cells grown in laboratory dishes and determine if they inhibit nerve cell function and cell-to-cell communication. They will also explore if these copper-containing oligomers could be used to help detect early brain changes associated with Alzheimer’s disease or targeted for the development of new treatments. The results of these studies may provide new information on the biological factors underlying beta-amyloid’s toxicity in Alzheimer’s disease. If successful, the results of Dr. Storr’s effort could shed light on novel avenues for developing targeted therapies to slow or stop the progression of Alzheimer’s disease at its earliest stages.

Source: https://www.alz.org/research/for_researchers/grants/funded-studies-details?FundedStudyID=596

 

Principal Investigator

Tim Storr , Simon Fraser University

Partners and Donors

Alzheimer's Association

Project Ongoing

Toxicity Pathways and Catalytic Potential of Cu-Containing AB Oligomers

  • Program Type

    Team grants

  • Area of research

    Neurodegeneration

  • Disease Area

    Alzheimer’s

  • Competition

    Alzheimer’s Association International Grant Program

  • Province

    British Columbia

  • Start Date

    2016

  • Total Grant Amount

    $136,468

Contact Us

1200 McGill College Avenue
Suite 1600, Montreal, Quebec
H3B 4G7

The offices of Brain Canada Foundation are located on the traditional, ancestral territory of the Kanien'kehá:ka Peoples, a place which has long served as a site of meeting and exchange amongst nations.

+1 (514) 989-2989 info@braincanada.ca

Playing with Marbles Podcast

Join us and take a journey to the real last great frontier – the brain.

Listen

Subscribe to Brain News

Receive our monthly electronic newsletter with updates on funded projects, upcoming events and breakthroughs in brain research.

Sign up

© 2023 Brain Canada Foundation

Registration number: 89105 2094 RR0001

  • Terms and Conditions
  • Privacy Policy

Design by Field Trip & Co