Skip to content
Project Directory
  • Français
Donate Now
  • Français
  • About
    • What We Do
    • EDI Action Plan
    • Leadership
    • Team
    • Annual Report
    • Publications
    • Careers
  • Brain Conditions
    • One Brain
    • ALS
    • Autism (ASD)
    • Brain Cancer
    • Brain Injury
    • Dementia
    • Epilepsy
    • Mental Illness
    • Multiple Sclerosis
    • Parkinson’s
    • Stroke
    • More
  • Research
    • Programs
    • Funding Opportunities
    • Program Partners
    • Announcements
  • Impact
    • Research Impact Stories
    • Equity, Diversity and Inclusion
    • Brain Health in Indigenous Communities
    • Women’s Brain Health
    • Mind Over Matter
  • How You Can Help
    • Ways to Give
    • Start a Fundraiser
    • Workplace Giving
    • The Great Minds

Funded Grants

Back to results

Understanding how deviations in postnatal hippocampal neurogenesis and circuit activity contribute to bipolar disorder with patient-derived pluripotent stem cells

Project Overview

The brain is vulnerable to many disorders that can strike at every stage of life. Bipolar disorder (BD) is a chronic and disabling neuropsychiatric condition that affects 1 in 50 Canadian adults. Like other mental illnesses, BD poses a heavy burden on society due to the cost of care and treatment, and the limited efficacy and/or serious side effects of available drug treatments. Above all, current therapies target only the symptoms and not the underlying cause of BD, which remain poorly understood. This project aims to overcome that problem by testing the idea that dysregulation of a store-operated calcium entry (SOCE) in precursor neurons contributes to the development of BD by affecting the growth and maturation of new neurons in the hippocampus after birth. We expect that our efforts could help identify new targets for the development of better pharmacological therapies. Specifically, our team recently discovered that induced pluripotent stem cell models prepared from BD patients exhibit striking deficits in calcium signaling mediated by SOCE, which we found affects the growth and development of neurons as a result. Using a unique combination of molecular and cellular methodologies, combined with brain network electrical activity recordings, we now propose to develop a unique line of investigation in BD research that will examine in detail the effect of this abnormal calcium signaling on the activity of the hippocampus, an area of the brain that has been implicated in mood regulation and the etiology of BD. Ultimately, our research will establish if SOCE dysfunction represents a disease mechanism for BD. Finally, in addition to advancing our knowledge of BD biology, the proposed research offers an excellent opportunity to establish a new cellular, systems, and behavioural assay platform for leading-edge research for other neuropsychiatric disorders that have been linked to problems in hippocampus function.

Principal Investigator

Jasmin Lalonde , University of Guelph

Partners and Donors

The Azrieli Foundation

Project Ongoing

Understanding how deviations in postnatal hippocampal neurogenesis and circuit activity contribute to bipolar disorder with patient-derived pluripotent stem cells

  • Grant Type

    Capacity building grants

  • Area of research

    Neurodevelopment

  • Disease Area

    Mental illness

  • Competition

    Future Leaders in Canadian Brain Research

  • Province

    Ontario

  • Start Date

    2021

  • Total Grant Amount

    $100,000

  • Health Canada Contribution

    $50,000

Contact Us

1200 McGill College Avenue
Suite 1600, Montreal, Quebec
H3B 4G7

+1 (514) 989-2989 info@braincanada.ca

Please note all online donations will receive an electronic tax receipt, issued by Brain Canada Foundation.

Our Donors

Playing with Marbles Podcast

Join us and take a journey to the real last great frontier – the brain.

Listen

Subscribe to Brain News

Receive our monthly electronic newsletter with updates on funded projects, upcoming events and breakthroughs in brain research.

Sign Up

Territorial acknowledgement

The offices of Brain Canada Foundation are located on the traditional, ancestral territory of the Kanien'kehá:ka Peoples, a place which has long served as a site of meeting and exchange amongst nations. We honour and pay respect to elders past, present and emerging, and dedicate ourselves to moving forward in the spirit of partnership, collaboration, and reconciliation. In our work, we focus our efforts on the Truth and Reconciliation Commission’s Calls to Action, particularly those that pertain to improving health for Indigenous Peoples and that focus on advancing our own learning on Indigenous issues.

© 2025 Brain Canada Foundation

Registration number: 89105 2094 RR0001

  • Terms and Conditions
  • Privacy Policy

Design by Field Trip & Co

  • About
    • What We Do
    • EDI Action Plan
    • Leadership
    • Team
    • Annual Report
    • Publications
    • Careers
  • Brain Conditions
    • One Brain
    • ALS
    • Autism (ASD)
    • Brain Cancer
    • Brain Injury
    • Dementia
    • Epilepsy
    • Mental Illness
    • Multiple Sclerosis
    • Parkinson’s
    • Stroke
    • More
  • Research
    • Programs
    • Funding Opportunities
    • Program Partners
    • Announcements
  • Impact
    • Research Impact Stories
    • Equity, Diversity and Inclusion
    • Brain Health in Indigenous Communities
    • Women’s Brain Health
    • Mind Over Matter
  • How You Can Help
    • Ways to Give
    • Start a Fundraiser
    • Workplace Giving
    • The Great Minds
Project Directory
Donate Now