Skip to content
Project Directory
  • Français
Donate Now
  • Français
  • About
    • What We Do
    • Leadership
    • Team
    • Publications
    • Careers
  • Diseases/Disorders
    • One Brain
    • ALS
    • Alzheimer’s
    • Autism
    • Brain Cancer
    • Brain Injury
    • Epilepsy
    • Mental Illness
    • Multiple Sclerosis
    • Parkinson’s
    • Stroke
    • Other
  • Research
    • Programs
    • Funding Opportunities
    • Program Partners
    • Announcements
  • Impact
  • Ways To Give
    • Your Impact
    • How You Can Help
    • Events

Funded Grants

Back to results

Dissecting acetylcholine/glutamate co-transmission in the striatum: importance of individual neurotransmitter in addiction and movement disorders

Project Overview

Parkinson’s disease and addiction have tremendous human and economical costs for our society. The secret to understand these pathologies lies in unravelling the functioning of a specific brain region named striatum. The striatum regulates several behavioural outputs that are affected in Parkinson’s disease and addiction, including motor control, learning of habits and skills, motivational and reward related learning. To communicate with each other, brain cells (or neurons) use a combination of electrical and secreted chemical signals, called neurotransmitters. Amongst these brain neurotransmitters, dopamine, acetylcholine and glutamate are key players in the striatum. Dysfunction of brain communication in the striatum underlies the above mentioned pathologies. For instance, Parkinson’s disease is largely due to the progressive disappearance of dopamine from the striatum. Dopamine is also critical for reward prediction as well as addiction by drugs such as cocaine, morphine, nicotine amphetamine and, alcohol. In addition, acetylcholine-secreting neurons (also known as TANS) regulate many of the pathological alterations in these two diseases. Dr. El Mestikawy and his team have recently made the astonishing discovery that acetylcholine-secreting neurons can also release the neurotransmitter glutamate. This suggests that these neurons can communicate with other cells in the striatum using two different chemical codes. They have also uncovered evidence that these bilingual neurons may use acetylcholine to regulate habit formation and motivation, whereas glutamate regulates drug addiction. Hence, by using these two separate “languages” TANS can provide distinct forms of information to other neurons in the striatum. The final goal of our proposal is to decode how TANS, by sending these two chemical codes, regulate the striatum in health and diseased states. Understanding this “neuronal bilingualism” will lead to the refinement of medications for the treatment of striatum-related diseases.

Principal Investigator

Salah El Mestikawy , Douglas Mental Health University Institute

Team Members

Vania Prado, University of Western Ontario

Marco Prado, University of Western Ontario

Partners and Donors

Fonds de recherche du Quebec - Sante (FRQS)

McGill University/Douglas Hospital Research Institute

Project Ongoing

Dissecting acetylcholine/glutamate co-transmission in the striatum: importance of individual neurotransmitter in addiction and movement disorders

  • Program Type

    Team grants

  • Area of research

    Central Nervous System

  • Disease Area

    Other

  • Competition

    2012 MIRI Team Grants

  • Province

    Québec

  • Start Date

    2014

  • Total Grant Amount

    $1,424,634

  • Health Canada Contribution

    $712,317

Contact Us

1200 McGill College Avenue
Suite 1600, Montreal, Quebec
H3B 4G7

The offices of Brain Canada Foundation are located on the traditional, ancestral territory of the Kanien'kehá:ka Peoples, a place which has long served as a site of meeting and exchange amongst nations.

+1 (514) 989-2989 info@braincanada.ca

Playing with Marbles Podcast

Join us and take a journey to the real last great frontier – the brain.

Listen

Subscribe to Brain News

Receive our monthly electronic newsletter with updates on funded projects, upcoming events and breakthroughs in brain research.

Sign up

© 2023 Brain Canada Foundation

Registration number: 89105 2094 RR0001

  • Terms and Conditions
  • Privacy Policy

Design by Field Trip & Co